arutema47's blog

書いたり書かなかったり。

育児で買ってよかったものリスト

二人男の子を育児中です。 妊娠~出産前後は忙しい割に買うものが多く、脳死でアマゾン買い物かごに放り込めるようなリストがあると良かったなという思い出書いてます。 アフィ記事ですが、誰かの役に立てば幸いです。 ミルク関連 お風呂関連 ベッドなど 抱…

LiDARのオススメ5選-2024年

LiDARのオススメ5選 オススメLiDARの性能と予想価格を表にしてみました。 tldr 結論から言うと一般の誤家庭であればMID360が最適な選択肢です。 DJIストアか正規代理店の光響さんから買いましょう。 Livox MID360 10万を切るLiDARながら、360°水平スキャンと…

CMOSアナログ設計を学ぶ資料集

アナログCMOS回路の基本 入門用 はじめてCMOSアナログ回路設計を学ぶ人向き。(研究室配属者など) 実際に設計しながら読み進めると良い。 CMOSアナログ回路入門: LSI設計者のための (半導体シリーズ)作者:谷口 研二CQ出版Amazon Next step Razavi アナログC…

ISSCCに通そう!

なぜトップ学会に通すか? others 投稿までのスケジュール どのような研究をすればISSCCに通るか? 論文執筆 図 サプリメント 論文投稿! コメント Rejectされたら Rejectはつらいよ ちょうど今日がISSCC締め切りでしたね、投稿した各位お疲れちゃんです・・…

TensorRT-LLMでLLM推論高速化

TensorRT-LLMとは TensorRTをLLM用に多数の推論高速化技術を入れたNvidiaのオープンソースフレームワーク。 GPUメモリ使用率を半分に低減し、速度も1.5-2倍程度改善してくれる強力なフレームワーク。 www.alibabacloud.com TensorRT-LLMについてはこちらのAl…

CES2024で発表されたLiDARのまとめ

大遅刻ですが、LiDARアドベントカレンダーの記事です。 CES 2024でもたくさんLiDARが発表され、各社大きく性能を伸ばしています。 なんで各社横並びで性能向上できたかは。。今年中に情報解禁されるんじゃないでしょうか。 Valeo Scala3 news.yahoo.co.jp yo…

Kaggleで勝つMeme技術

Kaggleアドベントカレンダー2023の5日目です。6日目はtakamiさんです。 Memeについて Kaggle Memeの代表 Memeは、インターネット文化の中で発展した一種の情報伝達手段です。 要は海外版クソコラです。 主にアニメや映画のワンシーンなどが使われます。 Meme…

学習が何で律速してるか、把握してますか?

(最新SSD IOはPCIe x4でした。ご指摘ありがとうございます。) はじめに どの処理で律速しているか調べる 各処理の速度改善方法 データ読み込み速度の改善 データ前処理速度の改善 GPU処理速度の改善 コンピューティングについての他記事 はじめに Kaggle Ad…

Pytorch学習スケジューラはtimmのCosineLRSchedulerがいいぞ

kaggle的備忘録 Pytorchモデル学習では学習率スケジューラ(LR scheduler)が必須。 特に論文ではCosineLRスケジューラがよく使われる。 こんなん 事前学習モデルでは最初に低いLRでwarmupを数epochした後に最高LRに設定後cosine上にLRが低下していくスケジ…

研究室立ち上げ時に参考にしたこと【WIP】

研究室運営の初動は共同研究者にも恵まれたのもあり、安定しつつありますが企業→大学講師パスだったので着任時に科研費もさきがけの存在すらしらなかったので情報収集に苦労しました。 誰かの役に立てるよう、備忘録的に参考になったサイトや情報をまとめま…

OpenAIのWhisperを使って動画字幕を自動生成

目的 OpenAIが公開した文字起こしAIのWhisperを使って動画に字幕を自動生成します。 パーフェクトではないですが、十分実用的な日本語字幕が生成できます。 用意 github.com Python3.7+とpytorch1.0+環境が必要。ローカルがなくてもcolabで十分動くと思いま…

物体検出ライブラリの紹介と所感

記事について 画像はDetectron2より 物体検出をほとんど使っていない方を対象として、2021年末の物体検出ライブラリを俯瞰することが本記事の目的。 ある程度物体検出の経験ある方は学ぶことは少ないと思う。またあくまで書いてあるのは筆者の感想であるので…

2021年面白かった本

実は三体とメダリストを布教する記事なんですが、オマケで今年面白かった技術書もまとめました。 技術書(順不同) ディープラーニング学習する機械 量子コンピュータの進歩と展望 研究者の仕事術 科研費獲得の方法とコツ RISC-V原典 Pythonではじめる数理最…

クソコンペオブザイヤー2021

よくぞこの記事に来てくれた。 褒美としてクソコンペに参加する権利をやろう 本記事について クソコンペを考える クソ要因 どうしたらクソ要因を減らせるのか? Shakeが大きいコンペがクソコンペか? クソコンペを避けるには KCY2021 グランプリ候補 Kaggle …

CPUとGPUのマルチスレッディングの違いについて

"Locality is efficiency, Efficiency is power, Power is performance, Performance is King", Bill Dally マルチスレッディングとは? CPUとGPUのマルチスレッディングの違いをブログにまとめていたけど例によって誰も興味なさそう— arutema47 (@arutema47…

KagglePC、サーバー構成メモ

Kaggleマシンの参考になればと思い執筆しました。 最近はColab Proが月1000円と破格でディープラーニング環境を提供しており、Kaggle Notebookも相当良いです。 感覚的にですが、30万くらいのマシンを組むよりはColab Pro、Kaggle Notebookの方が早く、それ…

論文執筆・研究活動に参考になるページ

論文の書き方 ymatsuo.com あのAIで有名な松尾先生の論文の書き方に関するページ。 論文のストーリー構築の重要さからproof-readingに関する心構えまで全て参考になる。 hontolab.org Stanford大のJennifer WidomのTips for Writing Technical Papersを和訳…

HAQ: Hardware-Aware Automated Quantization with Mixed Precision

HAQ: Hardware-Aware Automated Quantization with Mixed Precision (CVPR 2019 oral), Kuan Wang∗, Zhijian Liu∗,Yujun Lin∗, Ji Lin, and Song Han Paper Codes 課題 量子化はDNNをモバイルデバイスの高速化において重要な技術だが、各レイヤのビット幅な…

Introduction to Distance Sensors (Stereo Camera, Projection, LiDAR)

This is an English translation of aru47.hatenablog.com It's mostly powered by DeepL, so don't count too much on the English. Goals Stereo Cameras Overview Features Products used. Pattern Projection Cameras Overview Products iPhone Industri…

点群DNN、3D DNN入門 -3DYOLO, VoxelNet, PointNet, FrustrumPointNet, Pointpillars

またまたQiitaからのお引越し記事です。 センサについてはこちらをどうぞ。 aru47.hatenablog.com 目的 点群DNNでできること 3Dセンサ 3D DNNの家計図 変更履歴 2Dベースアプローチ Complex YOLO (ECCV workshop 2018), YOLO 3D (ECCV workshop 2018) 手法に…

距離センサ入門(ステレオカメラ、プロジェクション、LiDAR)

Qiitaからのお引越し記事です。 目標 ステレオカメラ 概要 特徴 使用製品 パターンプロジェクションカメラ 概要 使用製品 iPhone ゾゾスーツ 工業製品(Ensenso, キーエンス) Time of Flight LiDAR Time of Flightの原理 特徴 スキャン型LiDAR フラッシュ型Li…

Maskをopencv使って縮小する

目的 このようなMask画像を画像に対して縮小したいというマニアックな事例の備忘録。 これを こうする パイプライン マスクの中心を計算 # 重心を取得 m = cv2.moments(mask) cx = int(m['m10'] // m['m00']) cy = int(m['m01'] // m['m00']) print(cx, cy) …

有名なDeep Learningの特許を調べてみた

目的 有名所のDNN特許を調べてみました。ほとんどがGoogleの特許ですがBatchNorm、transformer以外日本で登録されていないのが多いですね。 調べたところで力尽きてちゃんとクレームはトップ以外読んでません。随時リストはアップデートしていきます。 参考…

Pytorch高速化 (3) TensorRTで推論を10倍高速化

TLdr; torch2trtというpytorchモデルをTensorRTに簡単に変換するライブラリを使い、Jetson nano+xavier上で画像認識とセグメンテーションの推論処理を10倍高速化できることを確認しました。 ただtorch2trtはカスタムモデルには対応していないため(resnetなど…

Github Actionsでpypiのパッケージを発行

なぜgithub actionsで発行できると楽か 自作ライブラリ開発しているとすると普通ならコーディング、setup.pyを記述、pypiにtwineでアップロードという流れになります。 blog.amedama.jp ただこのpypiへのアップロードが意外に面倒くさい。。!毎回pypiアカウ…

Pytorch高速化 (2)Mixed Precision学習を試す

Qiitaからのお引越しです。 前編 aru47.hatenablog.com TLDR; (2021/06/17) resnet50でCIFAR10をFP16により学習を2倍高速化でき、メモリ使用量も半分にできる。 pytorch1.6からデフォルトでMixed Precision学習をサポートしており、画像認識なら大抵これで上…

Pytorch高速化 (1)Multi-GPU学習を試す

Qiitaからのお引越しです。 Pytorch Advent Calender 2018 3日目の記事です。 はじめに 学生に"Pytorchのmulti-GPUはめっちゃ簡単に出来るから試してみ"と言われて重い腰を上げた。 複数GPU環境はあったのだが、これまでsingle GPUしか学習時に使ってこなか…

ハードウェアの速度をどう評価するか考える(2) ~メモリ、メモリ律速~

前回のあらすじとこの記事の目的 前編: ハードウェアの速度をどう評価するか考える(1) ~クロック、OPS~ 現代ハードウェアの計算性能を評価する尺度であるメモリ律速の概念とルーフラインモデルについて理解を深めることです。 本記事を通し、あるアルゴリ…

Reposado

久々にシリコンバレーレストランの記事。 www.reposadorestaurant.com google maps パロアルトでちょっといいレストラン(会食、パーティ)を予約しないとなーって時に役立つレストラン。 Fine Mexican Diningの名前の通り、洗練された高級志向のメキシコ料…

ハードウェアの速度をどう評価するか考える(1) ~クロック、OPS~

この記事の目的 現代ハードウェアの計算性能を評価する尺度であるメモリ律速の概念とルーフラインモデルについて理解を深めること。 対象読者はメモリバンド幅やOPSなどの概念があまりわかっていない人です。例えば本記事を通し、あるアルゴリズムが速度が十…